

Singular Values and Singular Vectors

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

Introduction

Introduction

range null space eigen value eigen vector transpose inverse symmetric matrix orthogonal matrix psd matrix

PCA low-rank approximation TLS minimization pseudoinverse separable models optimal rotation

Introduction

Singular Value

□ $S_{m \times n}$ Non-Square!! □ $\sigma_i = \sqrt{\lambda_i}$ $\lambda_i \in \sigma(S^T S), i = 1, ..., n$ □ $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{m-1} \ge \sigma_m$

Example

$$S = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$S^{T}S = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix} \Rightarrow \lambda(S^{T}S) = \{360, 90, 0\}$$

$$\Rightarrow \begin{cases} \sigma_{1} = \sqrt{360} = 6\sqrt{10} \\ \sigma_{2} = \sqrt{90} = 3\sqrt{10} \\ \sigma_{3} = 0 \end{cases}$$

Theorem

 $\{v_1, \dots, v_n\}$ are orthonormal eigenvectors of matrix $S^T S$ then singular values of matrix S are norm of Sv_i vectors:

$$||Sv_i|| = \sigma_i$$

Proof?

Example

$$S = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \rightarrow S^T S = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix} \rightarrow \sigma_1 = \sqrt{360}, \sigma_2 = \sqrt{90}, \sigma_3 = 0$$

$$v_{1} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix}, v_{2} = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}, v_{3} = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$$
$$Sv_{1} = \begin{bmatrix} 18 \\ 6 \end{bmatrix} \Rightarrow ||Sv_{1}|| = \sqrt{18^{2} + 6^{2}} = \sigma_{1}$$
$$Sv_{2} = \begin{bmatrix} 3 \\ -9 \end{bmatrix} \Rightarrow ||Sv_{2}|| = \sqrt{3^{2} + (-9)^{2}} = \sigma_{2}$$
$$Sv_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow ||Sv_{3}|| = 0 = \sigma_{3}$$

Theorem

 $\{v_1, \dots, v_n\}$ are orthonormal eigenvectors of matrix $S^T S$ and S has r non-zero singular value:

 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0, \qquad \sigma_{r+1} = \cdots = \sigma_n = 0$

 $\{Sv_1, \dots, Sv_r\}$ is an orthogonal basis for range of S

rank(S)=r

Rank of Matrix = Number of nonzero singular values why???

How to find $\{u_1, ..., u_r\}$ is a orthonormal basis for range of S

CE282: Linear Algebra

SVD

SVD Introduction

- Generalization of the spectral decomposition that applies to all matrices, rather than just normal matrices.
- □ Applications:
 - Compute the size of a matrix (in a way that typically makes more sense than norm)
 - Provide a new geometric interpretation of linear transformations
 - Solve optimization problems
 - Construct an "almost inverse" for matrices that do not have an inverse.

- □ Given any $m \times n$ matrix **A**, algorithm to find matrices **U**, **V**, and \sum such that (always exists)
- $\Box A = U\Sigma V^T A = U\Sigma V^*$

U is $m \times m$ and orthogonal (always real)

 \sum is $m \times n$ and diagonal with non-negative (always real) called <u>singular</u> <u>values</u>.

V is $n \times n$ and orthogonal (always real)

- \Box Columns of U are eigenvectors of AA^T (called the left singular vectors).
- **\Box** Columns of V are eigenvectors of $A^T A$ (called the right singular vectors).
- □ The non-zero singular vectors are the positive square roots of non-zero eigenvalues of AA^T or A^TA .

- \Box The Σ_i are called the singular values of **A**
- **If A** is singular, some of the Σ_i will be 0
- □ In general *rank*(**A**) = number of nonzero Σ_i
- SVD is mostly unique (up to permutation of singular values, or if some Σ_i are equal)

□ Assume A with singular value decomposition $A = U\Sigma V^T$. Let's take a look at the eigenpairs corresponding to $A^T A$:

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$(V^{T})^{T}(\Sigma)^{T}U^{T}(U\Sigma V^{T}) = V\Sigma^{T} U^{T} U^{T} U\Sigma V^{T} = V\Sigma^{T} \Sigma V^{T}$$

Hence $A^T A = V \Sigma^2 V^T$

- □ Recall that columns of V are all linear independent (orthogonal matrix), then from diagonalization $(B = XDX^{-1})$, we get:
 - The columns of V are the eigenvectors of the matrix $A^T A$
 - The diagonal entries of Σ^2 are the eigenvalues of $A^T A$

 \Box Let's call λ the eigenvalues of $A^T A$, then $\sigma_i^2 = \lambda_i$

□ In a similar way,

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T}$$
$$(U\Sigma V^{T})(V^{T})^{T}(\Sigma)^{T}U^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma\Sigma^{T}U^{T}$$

Hence $AA^T = U\Sigma^2 U^T$

- □ Recall that columns of *U* are all linear independent (orthogonal matrix), then from diagonalization ($B = XDX^{-1}$), we get:
 - The columns of U are the eigenvectors of the matrix AA^T

How can we compute an SVD of a matrix A?

- 1. Evaluate the n eigenvectors v_i and eigenvalues λ_i of $A^T A$
- 2. Make a matrix V from the normalized vectors v_i . The columns are called "<u>right singular vectors</u>".

$$\mathbf{V} = \begin{pmatrix} \vdots & \cdots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and} \ \sigma_1 \ge \sigma_2 \ge \cdots$$

4. Find $U: A = U\Sigma V^T \Rightarrow U\Sigma = AV \Rightarrow U = AV\Sigma^{-1}$. The columns are called "<u>left singular values</u>".

How can we compute an SVD of a matrix A?

Example

$$S = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} \rightarrow S^{T}S = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}, rank(S) = 1$$

$$\Delta(\lambda) = \lambda^{2} - 18\lambda = 0 \Rightarrow \sigma_{1} = \sqrt{18}, \sigma_{2} = 0 \Rightarrow \Sigma = \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$v_{1} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, v_{2} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \Rightarrow V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$Sv_{1} = \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix} \Rightarrow u_{1} = \frac{1}{\sigma_{1}}Sv_{1} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

$$u_{2} = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \\ 1/3 \end{bmatrix}, u_{3} = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \Rightarrow U = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = U\Sigma V^{T}$$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

□ The SVD is a factorization of a m x n matrix into $A = U\Sigma V^T$

Where U is a m x m orthogonal matrix, V^T is a n x n orthogonal matrix and Σ is a m x n diagonal matrix.

For a square matrix (m=n):

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}$$
$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \cdots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots \end{pmatrix}^T$$

Reduced SVD

$$\begin{bmatrix} Sv_1 & \dots & Sv_r & 0 & \dots & 0 \end{bmatrix}_{m \times n} = \begin{bmatrix} \sigma_1 u_1 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix}_{m \times n}$$
$$\begin{bmatrix} Sv_1 & \dots & Sv_r & Sv_{r+1} & \dots & Sv_n \end{bmatrix}_{m \times n} = \begin{bmatrix} \sigma_1 u_1 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix}_{m \times n}$$
$$S[v_1 & \dots & v_n] = \begin{bmatrix} u_1 & \dots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 & \\ \vdots & \vdots & \vdots & 0 \\ 0 & \dots & \sigma_r & 0 \end{bmatrix}$$
$$S_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$$
$$S = U \Sigma V^T$$

CE282: Linear Algebra

 $A = U_R \Sigma_R V_R^T$

We can instead rewrite the above as:

 $A = U \Sigma_R V_R^T$ where V_R is n x m matrix and Σ_R is a m x m matrix In general:

what happens when A is not a square matrix?

 \Box n > m $A = U\Sigma V^T$

Reduced SVD

$$U_R \text{ is a } m \text{ x } k \text{ matrix}$$

$$\Sigma_R \text{ is a } k \text{ x } k \text{ matrix}$$

$$V_R \text{ is a } n \text{ x } k \text{ matrix}$$

$$k = min(m, n)$$

We can instead rewrite the above as:

$$A = U\Sigma_R V_R^T$$

 But their columns are orthonormal.

where U_R is m x n matrix and Σ_R is a n x n matrix

 \Box Let's take a look at the product of $\Sigma^T \Sigma$ where Σ has the singular values of a A, a m x n matrix.

□ Wide Matrix

□ Tall Matrix

SVD Comparison

SVD	Diagonalization	Spectral Decomposition
applies to every single matrix (even rectangular ones).	only applies to matrices with a basis of eigenvectors	only applies to normal matrices
matrix ∑ in the middle of the SVD is diagonal (and even has real non- negative entries)	do not guarantee an entrywise non-negative matrix	do not guarantee an entrywise non-negative matrix
It requires two unitary matrices U and V	only required one invertible matrix	only required one unitary matrix

Lemma

Unitary Freedom of PSD Decompositions

Suppose $B, C \in \mathcal{M}_{m,n}(\mathbb{F})$. The following are equivalent:

- a. There exists a unitary matrix $U \in \mathcal{M}_m(\mathbb{F})$ such that C = UB,
- b. $B^*B = C^*C$,
- c. $(B\mathbf{v}).(B\mathbf{w}) = (C\mathbf{v}).(C\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$, and
- d. $||B\mathbf{v}|| = ||C\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{F}^n$.

Example

$$\begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3^{2} \\ -1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

- □ If $m \neq n$ then A^*A, AA^* have different sizes, but they still have essentially the same eigenvalues—whichever one is larger just has some extra 0 eigenvalues.
- □ The same is actually true of AB and BA for any A and B.

□ Proof SVD in another view!!

Geometric Interpretation and the Fundamental Subspaces

 $A = U\Sigma V^*$

The product of a matrix's singular values equals the absolute value of its determinant

Determining the rank of a matrix

Q Suppose A is a m x n rectangular matrix where m > n:

$$\begin{split} A &= \begin{pmatrix} \vdots & \cdots & \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n & \cdots & u_m \\ \vdots & \cdots & \vdots & \cdots & \vdots \end{pmatrix}_{m \times m} \begin{pmatrix} \sigma_1 & & \\ & \sigma_n \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{m \times n} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{m \times n} \\ A &= \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \vdots & \vdots \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \cdots & \sigma_1 v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & \sigma_n v_n^T & \cdots \end{pmatrix} = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_n u_n v_n^T \\ A &= \sum_{i=1}^n \sigma_i u_i v_i^T \\ A_1 &= \sigma_1 u_1 v_1^T \text{ what is rank} (A_1) = ? \end{split}$$

In general, $rank(A_k) = k$

CE282: Linear Algebra

Conclusion

□ Let $A \in \mathcal{M}_{m,n}$ be a matrix with rank(A) = r and the singular value decomposition $A = U\Sigma V^T$, where

$$U = [u_1 \mid u_2 \mid ... \mid u_m] \text{ and } \mathsf{V} = [v_1 \mid v_2 \mid ... \mid v_n]$$

Then

- a. $\{u_1, u_2, \dots, u_r\}$ is an orthonormal basis of range(A),
- b. $\{u_{r+1}, u_{r+2}, \dots, u_m\}$ is an orthonormal basis of null(A^*),
- c. $\{v_1, v_2, \dots, v_r\}$ is an orthonormal basis of range(A^*), and
- d. $\{v_{r+1}, v_{r+2}, \dots, v_n\}$ is an orthonormal basis of null(A)

A Geometric Interpretation

 $A = U\Sigma V^*$ Ae₂ \mathbf{e}_2 $A^* = V\Sigma^* U^*$ Α, $\rightarrow x$ \mathbf{e}_1 Ae₁ $A^{-1} = V \Sigma^{-1} U^*$ $\downarrow^{A_{-}}$ 170 A^*e_2 A^*e_1 $A^{-1}e_2$ $A^{-1}e_1$ $\rightarrow x$ $\rightarrow x$

Applications

Orthogonal Rank-One Sum Decomposition

□ Suppose $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, and $A \in \mathcal{M}_{m,n}(\mathbb{F})$ has rank(A) = r. There exist orthonormal sets of vectors $\{u_j\}_{j=1}^r \subset \mathbb{F}^m$ and $\{v_j\}_{j=1}^r \subset \mathbb{F}^n$ such that

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*,$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are the non-zero singular values of A.

- \Box Suppose you want to find best rank-*k* approximation to **A**
 - \circ Answer: set all but the largest k singular values to zero
- \square Can form compact representation by eliminating columns of \bm{U} and \bm{V} corresponding to zeroed $\bm{\Sigma}_i$

Image

Low Rank Approximation of Image

□ If $A \in \mathcal{M}_n$ is positive semidefinite then its singular values equals its eigenvalues.

SVD and Inverses

- □ Why is SVD so useful?
- $\Box \ A^{-1} = V \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^T$
 - Using fact that inverse = transpose for orthogonal matrices
 - \circ Since Σ is diagonal, Σ^{-1} also diagonal with reciprocals of entries of Σ
- \Box This fails when some Σ_i are 0
 - It's *supposed* to fail singular matrix
- Pseudoinverse: if $\Sigma_i = 0$, set $\frac{1}{\Sigma_i}$ to 0 (!)
 - "Closest" matrix to inverse
 - Defined for all (even non-square, singular, etc.) matrices
 - Equal to $(A^T A)^{-1} A^T$ if $A^T A$ invertible

Problem:

if A is rank-deficient, Σ is not invertible.

□ How to fix it:

Define the Pseudo Inverse

□ Pseudo Inverse of a diagonal matrix:

$$(\Sigma^{+})_{i} = \begin{cases} \frac{1}{\sigma_{i}}, & \text{if } \sigma_{i} \neq 0\\ 0, & \text{if } \sigma_{i} = 0 \end{cases}$$

□ Pseudo Inverse of a matrix A: $A^+ = V\Sigma^+ U^T$

□ If a matrix A has the singular value decomposition $A = UWV^T$

then the pseudo-inverse or Moore-Penrose inverse of A is $A^+ = V W^{-1} U^T$

1.3 Moore-Penrose Conditions

For a matrix A^+ to be the pseudoinverse of A, it must satisfy the following four **Moore-Penrose** conditions:

- 1. (MP1) $AA^+A = A$
- 2. (MP2) $A^+AA^+ = A^+$
- 3. (MP3) $(AA^+)^T = AA^+$
- 4. (MP4) $(A^+A)^T = A^+A$

These conditions ensure that A^+ behaves similarly to an inverse, even when A is not invertible.

Pseudo Inverse

$$A^+ = VW^{-1}U^T$$

If A is 'tall' (m > n) and has full rank $A^+ = (A^T A)^{-1} A^T$ (it gives the least-squares solution $x_{lsq} = A^+ b$) If A is 'short' (n > m) and has full rank $A^+ = A^T (AA^T)^{-1}$ (it gives the least-norm solution $x_{l-n} = A^+ b$)

• In general, $x_{pinv} = A^+ b$ is the minimum-norm, least-square solution.

$$\Box x^* = A^{-1}b = (UDV^T)^{-1}b,$$

 $(UDV^{T})^{-1} = V^{-T} D^{-1} U^{-1}$

Moore-Penrose pseudoinverse $x^* = A^{-1}b = VD^{-1}U^Tb$

Invert the diagonal entries in D that are nonzero, but leave the other diagonal entries alone as zeros.